首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2534篇
  免费   412篇
  国内免费   795篇
测绘学   67篇
大气科学   452篇
地球物理   1083篇
地质学   1195篇
海洋学   506篇
天文学   72篇
综合类   85篇
自然地理   281篇
  2024年   4篇
  2023年   31篇
  2022年   78篇
  2021年   95篇
  2020年   121篇
  2019年   123篇
  2018年   111篇
  2017年   131篇
  2016年   147篇
  2015年   145篇
  2014年   153篇
  2013年   174篇
  2012年   147篇
  2011年   144篇
  2010年   153篇
  2009年   188篇
  2008年   205篇
  2007年   184篇
  2006年   196篇
  2005年   153篇
  2004年   138篇
  2003年   127篇
  2002年   98篇
  2001年   113篇
  2000年   100篇
  1999年   91篇
  1998年   109篇
  1997年   69篇
  1996年   57篇
  1995年   43篇
  1994年   24篇
  1993年   19篇
  1992年   19篇
  1991年   14篇
  1990年   7篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有3741条查询结果,搜索用时 187 毫秒
111.
Four major fault systems oriented N–S to NNE–SSW, NE–SW, E–W and NW–SE are identified from Landsat Thematic Mapper (TM) images and a high resolution digital elevation model (DEM) over the Ethiopian Rift Valley and the surrounding plateaus. Most of these faults are the result of Cenozoic - extensional reactivation of pre-existing basement structures. These faults interacted with each other at different geological times under different geodynamic conditions. The Cenozoic interaction under an extensional tectonic regime is the major cause of the actual volcano-tectonic landscape in Ethiopia. The Wonji Fault Belt (WFB), which comprises the N–S to NNE–SSW striking rift floor faults, displays peculiar propagation patterns mainly due to interaction with the other fault systems and the influence of underlying basement structures. The commonly observed patterns are: curvilinear oblique-slip faults forming lip-horsts, sinusoidal faults, intersecting faults and locally splaying faults at their ends. Fault-related open structures such as tail-cracks, releasing bends and extensional relay zones and fault intersections have served as principal eruption sites for monogenetic Plio-Quaternary volcanoes in the Main Ethiopian Rift (MER).  相似文献   
112.
Andrei I. Kozhurin   《Tectonophysics》2004,380(3-4):273-285
The active faults known and inferred in the area where the major Pacific, North American and Eurasian plates come together group into two belts. One of them comprises the faults striking roughly parallel to the Pacific ocean margin. The extreme members of the belt are the longitudinal faults of islands arcs, in its oceanic flank, and the faults along the continental margins of marginal seas, in its continental flank. The available data show that all these faults move with some strike-slip component, which is always right-lateral. We suggest that characteristic right-lateral, either partially or dominantly, kinematics of the fault movements has its source in oblique convergence of the Pacific plate with continental Eurasian and North American plates. The second belt of active faults transverses the extreme northeast Asia as a continental extension of the active mid-Arctic spreading ridge. The two active fault belts do not cross but come close to each other at the northern margin of the Sea of Okhotsk marking thus the point where the Pacific, North American and Eurasian plates meet.  相似文献   
113.
1. Introduction The observed facts show that the ENSO cycle has obvious phase-locking and oscillates irregularly (An and Wang, 2001; Kaplan et al., 1998). Based on Zibiak and Cane's (1987) model (hereafter, the Z-C model) and simple, coupled ocean-atmosph…  相似文献   
114.
用一个中等复杂程度的热带海气耦合模式模拟LaNi na事件成熟位相锁定在年底左右的特征并研究其形成的机制。结果表明 ,模式能很好地模拟观测到的LaNi na事件成熟位相锁定在年底左右的特征。LaNi na事件成熟位相锁定在年底主要由海洋气候基本态引起。海洋垂直平均流是LaNi na事件成熟位相锁定在年底左右的最主要因子。由海洋气候基本态的季节变化所引起的冷平流的季节变化是LaNi na事件成熟位相锁定在年底的机制。在LaNi na事件期间 ,1~ 5月份 ,赤道中东太平洋地区的冷平流较弱 ,它不能平衡海气热量交换过程的影响 ,因而海洋表面温度增加。这一过程使海气耦合不稳定度减弱 ,从而使LaNi na事件衰减。 6~ 12月份 ,赤道中东太平洋地区的冷平流较强。海气热量交换过程的影响不能平衡较强冷平流的影响 ,因而海洋表面温度减小。这一过程使海气耦合不稳定度加强 ,从而使LaNi na事件发展。这样 ,LaNi na事件成熟位相容易出现在年底左右。  相似文献   
115.
This work presents an efficient methodology for the analysis of vibrations in a railroad track system, induced by the passage of conventional and high-speed trains. To this end the Boundary Element Method is used to model the soil-tie system within the framework of impulse response techniques. Conventional Finite Element Methods along with Newmark's integration is used for the modeling of the rail system. The two methods are coupled at the tie-rail interface and the solution is obtained following a staggered, time marching scheme in an efficient manner. The methodology accounts for Soil-Structure Interaction and traveling wave effects. In addition, this work identifies the parameters that affect the efficient modeling of railroad track systems as they pertain to the proposed solution methodology.  相似文献   
116.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   
117.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
118.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
119.
Irregularly shaped (IRS) particles widely exist in many engineering and industrial fields. The macro physical and mechanical properties of the particle system are governed by the interaction between the particles in the system. The interaction between IRS particles is more complicated because of their complex geometric shape with extremely irregular and co‐existed concave and convex surfaces. These particles may interlock each other, making the sliding and friction of IRS particles more complex than that of particles with regular shape. In order to study the interaction of IRS particles more efficiently, a refined method of constructing discrete element model based on computed tomography scanning of IRS particles is proposed. Three parameters were introduced to control the accuracy and the number of packing spheres. Subsequently, the inertia tensor of the IRS particle model was optimized. Finally, laboratory and numerical open bottom cylinder tests were carried out to verify the refined modeling method. The influence of particle shape, particle position, and mesoscopic friction coefficient on the interaction of particles was also simulated. It is noteworthy that with the increase of mesoscopic friction coefficient, the fluidity of IRS particle assembly decreases, and intermittent limit equilibrium state may appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
120.
This paper presents a novel dynamical model to analyze the long‐term response of a percussive drilling system. This departs from existing approaches that usually consider a single activation and bit/rock interaction cycle for the analysis of the process performance. The proposed model integrates the axial dynamics of an elastic piston and an elastic drill bit, a motion‐dependent pressure law to drive the piston, and a generalized bit/rock interaction law representative of the dynamic indentation taking place at the bit/rock interface. It applies to down‐the‐hole percussive drilling as well as top‐hole, with minor modifications. The model does not account for the angular motion or the hole cleaning, however. The model is first formulated mathematically; then, a finite‐dimensional approximation is proposed for computations. Numerical analyses of the model response, for a low‐size down‐the‐hole percussive system, follow. The period‐1 stationary response for the reference configuration is studied in detail, and parametric analyses assessing the influence on the rate of penetration of the bit/rock interaction parameters, the feed force, and the percussive activation parameters are conducted. These analyses reveal that the multiscale nature of the process is well captured by the model and recover expected trends for the influence of the parameters. They also suggest that a significant increase of the penetration rate can be achieved by increasing the percussive frequency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号